Dynamic changes in interneuron morphophysiological properties mark the maturation of hippocampal network activity.
نویسندگان
چکیده
During early postnatal development, neuronal networks successively produce various forms of spontaneous patterned activity that provide key signals for circuit maturation. Initially, in both rodent hippocampus and neocortex, coordinated activity emerges in the form of synchronous plateau assemblies (SPAs) that are initiated by sparse groups of gap-junction-coupled oscillating neurons. Subsequently, SPAs are replaced by synapse-driven giant depolarizing potentials (GDPs). Whether these sequential changes in mechanistically distinct network activities correlate with modifications in single-cell properties is unknown. To determine this, we studied the morphophysiological fate of single SPA cells as a function of development. We focused on CA3 GABAergic interneurons, which are centrally involved in generating GDPs in the hippocampus. As the network matures, GABAergic neurons are engaged more in GDPs and less in SPAs. Using inducible genetic fate mapping, we show that the individual involvement of GABAergic neurons in SPAs is correlated to their temporal origin. In addition, we demonstrate that the SPA-to-GDP transition is paralleled by a remarkable maturation in the morphophysiological properties of GABAergic neurons. Compared with those involved in GDPs, interneurons participating in SPAs possess immature intrinsic properties, receive synaptic inputs spanning a wide amplitude range, and display large somata as well as membrane protrusions. Thus, a developmental switch in the morphophysiological properties of GABAergic interneurons as they progress from SPAs to GDPs marks the emergence of synapse-driven network oscillations.
منابع مشابه
Activity-dependent switch of GABAergic inhibition into glutamatergic excitation in astrocyte-neuron networks
Interneurons are critical for proper neural network function and can activate Ca2+ signaling in astrocytes. However, the impact of the interneuron-astrocyte signaling into neuronal network operation remains unknown. Using the simplest hippocampal Astrocyte-Neuron network, i.e., GABAergic interneuron, pyramidal neuron, single CA3-CA1 glutamatergic synapse, and astrocytes, we found that interneur...
متن کاملDevelopment of early‐born γ‐Aminobutyric acid hub neurons in mouse hippocampus from embryogenesis to adulthood
Early-born γ-aminobutyric acid (GABA) neurons (EBGNs) are major components of the hippocampal circuit because at early postnatal stages they form a subpopulation of "hub cells" transiently supporting CA3 network synchronization (Picardo et al. [2011] Neuron 71:695-709). It is therefore essential to determine when these cells acquire the remarkable morphofunctional attributes supporting their ne...
متن کاملMultiple forms of long-term synaptic plasticity at hippocampal mossy fiber synapses on interneurons.
The hippocampal mossy fiber (MF) pathway originates from the dentate gyrus granule cells and provides a powerful excitatory synaptic drive to neurons in the dentate gyrus hilus and area CA3. Much of the early work on the MF pathway focused on its electrophysiological properties, and ability to drive CA3 pyramidal cell activity. Over the last ten years, however, a new focus on the synaptic inter...
متن کاملDeletion of Dlx 1 results in reduced glutamatergic input to hippocampal interneurons 1 2
23 Dlx transcription factors are important in the differentiation of GABAergic interneurons. In mice 24 lacking Dlx1, early steps in interneuron development appear normal. Beginning around one 25 month of age, primarily dendrite-innervating interneuron subtypes begin to undergo apoptosis in 26 Dlx1 mice; this is accompanied by a reduction in GABAergic transmission and late-onset 27 epilepsy. Th...
متن کاملKv4.3-mediated A-type K+ currents underlie rhythmic activity in hippocampal interneurons.
Hippocampal-dependent learning and memory processes are associated with theta frequency rhythmic activity. Interneuron and pyramidal cell network interactions underlie this activity, but contributions of interneuron voltage-gated membrane conductances remain unclear. We show that interneurons at the CA1 lacunosum-moleculare (LM) and radiatum (RAD) junction (LM/RAD) display voltage-dependent sub...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 32 19 شماره
صفحات -
تاریخ انتشار 2012